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Abstract  

Delays and cost overruns are frequent in 

infrastructure construction projects. Traditionally, 

deviations are often identified late, and it is very 

difficult to trace back the causes. Decisions are often 

taken by experience and not with the support of data 

directly coming from site. Moreover, schedules are 

often static and thus not able to reflect the real 

conditions on-site. Emerging technologies like 

Building Information Modeling (BIM), mobile cloud 

computing, and advanced sensors can help to 

overcome the previously mentioned issues. The 

collection of production data by sensors with the aim 

to compare production metrics with the schedule in 

order to introduce a Continuous Improvement 

Process (CIP).  

In the paper, we propose a framework for a digital 

platform to gather production data in real-time and 

to identify early on bottlenecks that could potentially 

lead to delays and deviations. The proposed platform 

should support in collecting, analyzing, and 

structuring production data. Furthermore, the 

platform should give insights and support 

organizational decision making of a CIP.  With a 

demonstration case we show the three main 

functionalities of the platform: 1) retrospective 

analysis, 2) live analysis and 3) predictive analysis. In 

future research, the platform will be implemented 

and validated within railway construction projects of 

the company Rhomberg Sersa Rail Group AG. 
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1 Introduction 

Delays and cost overruns are frequent in 

infrastructure construction projects. Only around 25% of 

construction projects worldwide have come within the 

range of 10% of their original deadlines from 2012 to 

2014 (KPMG 2015). Globally, rail construction projects 

are frequently affected by budget and schedule overruns 

by an average of 44.7% (McKinsey Global Institute 

2015). Whereas other industries almost doubled their 

productivity over the past decades, the construction 

industry remained the same (McKinsey Productivity 

Science Center, 2015). Considering railway construction 

projects, short durations for maintenance as well as new 

installments are crucial to avoid a breakdown of the 

railway network. Otherwise, time overruns are often 

fined with high penalties.  

Traditionally, one of the biggest issues is the usage of 

static schedules that do not reflect real conditions on-site 

(Dallasega et al. 2018). As a result, schedules become 

useless and coordination is based on improvisations. 

Furthermore, progress tracking is often based on rough 

estimations and thus schedule deviations are not known 

in detail. Scheduling is usually done according to the 

experience of the project or site manager and not based 

on the monitoring of the construction progress. Thus, it 

is very difficult to identify bottlenecks, as for example a 

machine that reduces speed and thus leads to a potential 

decrease of productivity of the following construction 

processes. 

As a result of the previous mentioned issues, 

problems are often identified in a late stage making it 

difficult to implement appropriate improvement actions 

in time. Furthermore, construction projects are loosely 

connected and improvements are not systematically 

stored or transferred to future projects (Tetik et al. 2019). 

Early identification of bottlenecks and a dynamic 

definition of improvement actions as well as their impact 

would decrease variability and thus reduce budget 

overruns.  

In order to minimize delays and defects, other 

industries such as manufacturing implemented Lean 

Management Principles that are based on the Toyota 

Production System. Lean Management focuses on the 

improvement of the processes by defining and evaluating 

the Value Stream with a focus on Value-Adding activities 

and the elimination of waste which is defined as ‘any 
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activity that does not add up to the products value’ 

(Womack and Jones 2003). A central element of the Lean 

Management is Visual Control of process execution and 

deviations. Appropriate Improvement actions are also 

visualized and responsibilities are defined that leads to 

process improvement accountability (Mann 2014). 

The Plan-Do-Check-Act (PDCA) approach is a 

framework to improve processes and track the progress 

of improvement in manufacturing companies. The 

approach consists of 4 phases (Chong and Perumal, 

2020). The first is defined as the pre-implementation 

(Plan) where the improvement actions get planned. The 

second stage is the implementation of the planned actions 

(Do) in which the Lean tools of improvements get carried 

out. The third phase is the evaluation (Check) in which 

the performance of the improvement actions is analyzed. 

The last phase is the standardization and documentation 

of the successfully implemented actions (Act) (Chong 

and Perumal, 2020).  

The implementation of Lean Construction is well 

researched and methodologies such as the Last Planner 

System (LPS) (Ballard 2000), Takt Planning (Haghsheno 

et al. 2016), or Location-Based Management System 

(Kenley and Seppänen 2009) have been applied in 

practice. However, the identification of waste in 

construction is usually reactive. Commonly used Key 

Performance Indicators (KPI), like the Cost Performance 

Index (CPI) or the Schedule Performance Index (SPI), 

are unable to provide in-depth analyses about causes of 

problems and thus they give limited support in suggesting 

appropriate improvement actions (Dallasega et al. 2020). 

Commonly used software tools, like Vico Office 

Software (https://vicooffice.dk/en/), visualize 

construction schedules with a flowline based on 

quantities and production rates derived from BIM models. 

However, these types of software give a limited support 

in proposing appropriate improvement actions in case of 

schedule deviations. A platform that collects production 

data in real-time and compares it with the planned ones, 

incorporating a continuous improvement process (CIP) 

would enable higher productivity rates. So far most of the 

works in this area are very conceptual and lack empirical 

validation (Tetik et al. 2019).  

Considering the manufacturing industry, the usage of 

real-time data to optimize production processes is one of 

the main pillars of Industry 4.0 (Schuh et al. 2012). 

Although, the utilization of real-time data coming 

directly from site to support scheduling and monitoring 

processes is currently not widely researched and 

practiced in construction. Therefore, we propose a 

framework for a digital platform that allows the 

comparison of planned and as-built data enabling a CIP 

to support early identification of problems in 

construction. The proposed framework for the digital 

platform is structured in three main functionalities:  

1) retrospective analysis, 2) live analysis, and 3) 

predictive analysis. 

The previously listed functionalities are motivated by 

using three demonstration cases that were derived from a 

project of the company Rhomberg Sersa Rail Group in 

Switzerland.  

2 Literature Review  

Traditionally, live data is barely collected in the 

construction industry and, therefore, platforms to 

document progress or production data in real-time are not 

widely distributed. According to Zhao et al. (2019), the 

traditional process of data collection has remained 

manual in the construction industry. In their research they 

propose a platform model that combines Bluetooth Low 

Energy technology and 3G/4G network as connection 

methods that explore the movements and time 

information of workers on site which is used to manage 

resource flows using lean principles (Zhao et al. 2019).  

Similarly, Tetik et al. (2019) proposed a framework 

to improve construction performance through closing the 

loop from construction to design. They propose to 

centralize the As-Built BIM model and gather production 

data for reuse in future projects. The aim is to use the 

platform as a knowledge database. However, live data 

analysis is not part of the research.  

Another digital platform is proposed by Rossi et al. 

(2019) that focuses on the productivity measurement of 

machines to identify their value-adding activities. 

Although, they do not consider interdependencies of 

different machines which is an important aspect to 

consider in infrastructure projects. In this way, 

bottlenecks can be identified but appropriate 

improvement actions cannot be derived.   

According to Akhavian and Behzadan (2015) direct 

observations such as surveys in the field to obtain large 

volumes of high-quality data is inefficient since manual 

gathering is time consuming and inaccurate. Automated 

data collection using sensors, vision-based systems and 

laser scanners gained importance in quantitative analysis 

of construction activities. The authors propose a 

framework to analyze the production data on different 

granularities to gain accuracy in the data collection and 

establish a Level of Detail (LoD) for processing 

production data. (Akhavian and Behzadan 2015). 

Song and Eldin (2012) propose a framework for real-

time tracking that contains process knowledgebase, 

adaptive modeling and simulation services. The system 

constantly tracks operation activities and data is used for 

accurate lookahead scheduling However, a structured 

way to identify root causes is not considered in the 

approach.  

Another framework for data gathering and processing 

was proposed by Vasnev et al. (2014), which should 
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support decision making based on production data in 

three different levels: operational, tactical and strategic. 

The aim of the framework is to run post-construction 

analyses of the production process (Vasnev et al. 2014). 

The literature review shows that a platform that 

processes production data is researched in the field. 

Several functionalities of a platform are proposed with a 

different focus. The reviewed research mostly focuses on 

the data gathering and the evaluation of productivity rates 

respectively value adding activities. Nevertheless, to the 

best of our knowledge, a platform that focuses on 

Continuous Improvement actions based on production 

data can be considered as novel in the field.  

3 Concept 

This paper proposes the framework for a CIP 

platform to collect, analyze and adapt the production 

planning of railway construction projects. The platform 

will collect as-built production data. It will analyze how 

causes of problems (losses) can be identified 

retrospectively (Demonstration case - Scenario 1) to 

provide better planning data for future infrastructure 

projects. Next, it will identify problems in real-time to 

implement appropriate improvement actions 

(Demonstration case - Scenario 2). Moreover, it will 

identify potential future problems before their occurrence 

to proactively avoid budget and schedule overruns 

(Demonstration case - Scenario 3). The developed 

framework will be implemented and validated in selected 

project scenarios of the company Rhomberg Sersa Rail 

Group. 

The proposed framework of the platform should 

support the collection, analysis and structuring of 

production data in real-time. A centralized platform will 

enable on site as well as remote access to the data. 

Gathering the data in an overall database promotes a 

holistic view on construction performance. It will run a 

live comparison with the planned schedule data in order 

to identify bottlenecks that led to potential deviations. 

The system that performs the analysis will be defined 

within the future implementation. As shown in Figure 1, 

the platform is the link between Planning and Production 

that processes both sides and can enhance data driven 

decision making. 

  

Figure 1: Concept diagram  

In order to run a comparison of the planning- and 

production data, the dataset has to be aligned and defined 

by the same measurement unit e.g production speed. The 

data analysis comparison is performed by overlaying the 

data in a backend system respectively database that runs 

a permanent data evaluation. The analysis can be 

performed in various ways respectively with different 

scopes. Our concept proposes three main functionalities 

for the evaluation of the production data: retrospective 

analysis, live analysis, and predictive analysis.  

1 Retrospective Analysis 

The retrospective analysis identifies production 

bottlenecks  after the construction process was carried out. 

If the analysis is executed in short cycles, appropriate 

improvements can be made for following processes 

within the actual or future projects. For example, if the 

daily target of a construction site is not reached, the 

proposed platform will support the identification of the 

root cause by pointing out the bottleneck. Improvement 

actions in order to adhere to the schedule in the following 

days or to avoid the problem to cause deviations again 

are suggested.   

2 Live Analysis 

The live analysis compares the production data in real 

time and indicates deviations from the planned schedule. 

Then, adjustments can be evaluated and implemented in 

real time. For example, the productivity rate that is 

necessary in order to adhere to the schedule can be 

displayed in the cockpit of the machine. The data 

provides live performance measures and the status of the 

production. It requires a setup with high bandwidth on 

site in order to process the data between the machines and 

the platform. The live comparison of the production data 

to the planned production schedule leads to the 

possibility to take live improvement actions such as 

increasing productivity rates. Even if an unpredictable 

deviation occurs, the data processing conducted live in 

the background can propose the right production speed to 

recover delays and assure schedule adherence.  

3 Predictive Analysis  

Based on data of previous projects, problems can be 

identified before they occur. The provision of production 

data respectively the production problems in the design 
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and work preparation leads to a more stable schedule and 

a decrease of variation. The more high-quality data is 

provided the more stable the prediction will get. 

Technologies such as Artificial Intelligence (AI) can 

support the analysis of large data sets. Machine Learning 

can support a predictive analysis of a likelihood of a 

certain problem if the input data is structured accurate. 

(Taofeek et. al, 2020) 

For each process or machine a threshold productivity 

value has to be defined that can be supported by Machine 

Learning. If the value is out of the defined threshold, then 

the platform will give a notification for that point in the 

schedule. The notifications can then be set in focus and 

the reason for deviation identified and categorized. The 

proposed classification functionality will get integrated 

and the reasons that commonly lead to deviations 

predefined. If a certain deviation occurs the platform 

supports in the identification of causes and improvement 

actions. As a structure to support the root cause analysis 

the Lean tool `five whys` will be used. According to 

David Mann the 5 whys is a basic method of root cause 

analysis. Every Why is intended to go deeper into the 

cause of a situation (Mann, 2014). The predefined tree 

diagram extends over the time and the user has the ability 

to complement the categories in order to cover every 

reason for deviation and preparation for further 

deviations. The classification according to the tree 

diagram respectively 5 Why can enhance project specific 

as well as organizational decisions. 

 

Figure 2: Problem Classification - Tree diagram 

 

The tree-diagram (Figure 2) captures the layers of the 

5 Whys’ and supports in defining the root cause by 

proposing previous documented reasons for deviation.  

If e.g., the overall evaluation points out that a high 

percentage of problems lead back to production machines, 

improvement actions can be focused to maintenance 

tasks. We propose each level of the tree diagram has a 

named definition and will be accessible by the people 

who can use the information for their decision making. 

However, the adoption of the tool is an important aspect 

of success. In order to analyze the root causes the 

categorization is essential. The layers will be defined by 

analyzing reasons for deviations of past projects by 

evaluating existing data and experience from people 

working on site. The definition of the layers will be 

defined according to the results of the analysis. 

4 Demonstration Case 

The scenario of the demonstration case was derived 

from a previous project of Rhomberg Sersa Rail Group. 

The planned data was gathered according to a project 

schedule. Nevertheless, the As-Is production data was 

derived from feedback of the site manager based on his 

knowledge. The production data wasn’t gathered while 

operations because such a system isn’t in place on the 

construction sites of the Rhomberg Sersa Railgroup. To 

describe the functionalities of the platform, two processes 

are focused. The goal of the chosen schedule cutout is to 

build the ballast track bed and the laying of rails. Both 

processes are conducted by machines (M1: Ballast Track 

machine, M2: Track crane).  

Productivity rates of both machines are the same that 

leads to a harmonized production speed. The construction 

of 200 m starts at 06:00 am and the completion is planned 

at 12:30 pm (Figure 3). The As-Is completion occurred at 

13:30 pm. Thus, the schedule was exceeded by one hour. 

A reflection of the delay was conducted but a valid 

identification of the root cause was not possible due to 

missing data. The usage of the proposed platform will 

enable different ways of analyzing the data and 

furthermore conduct appropriate improvement actions. 

The Rhomberg Sersa Railgroup is currently developing a 

software used to model the construction processes within 

a BIM environment. A novelty of that software is that the 

machines are integrated into the 4D planning 

environment and their motion respectively process 

execution is simulated. The aim of that software is to run 

process simulations in order to check the feasibility based 

on 4D clash detection and decrease variability. 

Standardized construction process modules can be used 

in order to improve the planning process. However, the 

integration of feedback from site in real-time is not yet 

considered in the software. Furthermore, the Rhomberg 

Sersa Railgroup recently launched a machine monitoring 

tool that structures complex machine data and makes it 

accessible. In the following chapters we describe the 

functionalities of the platform according to a 

demonstration case. 
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Figure 3: Demonstration Case: Schedule (Planned) 

 

4.1 Scenario 1: Retrospective Analysis 

The retrospective analysis of the production data 

leads to a bottleneck identification after the construction 

process was carried out. If the analysis is executed in 

short cycles appropriate improvements can be made for 

following processes within the actual or future projects. 

The analysis of the As-Is data in this scenario points out 

that M1 had a loss of productivity in the area between 

75m and 100m. The loss occurred between 08:15 and 

10:00 am. M2 had to adjust the speed due to the loss of 

M1 (Figure 4). According to the data M1 is the bottleneck 

and the reason for the delay. The red marked area 

highlights the area the deviation occurred. The As-Is 

graph of both machines points out that the adjustment of 

M2 was reactive and a collision was prevented on short 

notice on site. The analysis gives an indication about the 

time and the area. The identification of the root cause of 

the problem can be narrowed down with this information 

and further investigations can be done. The identified 

problem point will then be classified supported by the 

proposed root cause analysis tool respectively with the 

tree diagram. 

  

Figure 4: Way-time diagram - Retrospective 

Analysis 

 

4.2 Scenario 2: Live Analysis 

As described in the concept the machines are connected 

through the platform and the productivity can be 

compared to the planned in a continuous way during 

production. At 08:00AM when M1 slows down the 

information goes directly to M2, which can adjust its 

speed (Figure 5). At the moment when the productivity 

reaches the average, the platform can propose the right 

speed in order to adhere to the schedule. The information 

can be integrated into the system and the machine can be 

operated according to the information calculated in the 

platform. The live analysis enables not just live 

evaluation but also a live conduction of improvement 

actions such as the adjustment of the productivity rate in 

order to reach the planned schedule. 

  

Figure 5: Way-time diagram - Live Analysis 

4.3 Scenario 3: Predictive Analysis 

In this scenario a potential problem will be highlighted in 

advance (Figure 6). The construction team is able to 

perform measures in order to prevent the occurrence of 

the problem. The platform detects a potential risk based 

on the data of previous projects. The graphs show that the 

As-Is production was as planned. The machines were 

able to perform the planned productivity starting 

06:00AM to 12:30PM. Furthermore, proposals for the 

mitigation of the risk are linked based on the previous 

improvement actions. As shown in Figure 6 the 

productivity remains as planned. Both machines can 

work as planned and the risk for delay can be eliminated. 

The outcome assures schedule adherence.  
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Figure 6: Way-time diagram - Predictive Analysis 

5 Discussion 

The proposed framework has its focus on railway 

construction projects. Nevertheless, the functionalities 

can be transferred to other machine-driven infrastructure 

projects such as road construction. Due to the lack of 

possibilities of data collection supported with sensors the 

use in building construction projects it is not in scope but 

can be further evaluated in the future research.  

6 Conclusion & Outlook 

A platform for the analysis of production data in real-

time by comparing it with the planned schedule and 

providing a structure to categorize reasons for deviations 

would decrease variability in the construction industry. 

As described in the literature review several concepts for 

live data collection and analysis were proposed. However, 

to the best of our knowledge, a platform that focuses on 

Continuous Improvement actions based on production 

data could be considered as novel in the field. The 

proposed functionalities of retrospective, live, predictive 

analyses offer different ways to analyze and improve the 

production. The retrospective analysis enables a data 

driven review and supports identifying bottlenecks 

retrospectively. The live analysis enables live 

improvement actions such as increasing or decreasing 

productivity rates. The live processing of the data enables 

a data driven proposal of adaptions. When combined with 

machine learning, the collection of this high-quality 

production data can enable predictive analyses. The 

knowledge of previous construction projects can so be 

used to improve the planning process by considering 

potential risks that usually appear during construction.  

The detection of problem points with the 

classification functionality enables a focused CIP. The 

overall evaluation of the problems from production will 

enable a data-based decision making on different 

organizational levels. However, the implementation has 

to be accompanied with a comprehensive roll-out plan in 

order to increase acceptance. The unveiling and 

visualization of problems can lead to resistance from the 

workforce. 

The framework will be developed and practically 

evaluated in future projects of the company Rhomberg 

Sersa Rail. Further research activities should be the 

creation of a database for the comparison of the planned 

and the production datasets. The gathering of production 

data of manual tasks is very difficult and therefore it 

should be analyzed how this could be supported with 

emerging technologies (e.g., reality capture, motion 

capture and others). 

The functionality of the deviation recognition should 

be implemented based on the dataset to allow a 

Continuous Improvement Process or Root Cause 

Analysis of identified problems. The tree diagram as 

shown in Figure 2 should be systematically developed 

and extended with specific construction site experience.  

The authors would like to thank the company 

Rhomberg Sersa Rail for providing an insight into their 

practical processes and supporting the research.  

References 

[1] Braglia, M., Dallasega, P., & Marrazzini, L. (2020). 

Overall Construction Productivity: a new lean 

metric to identify construction losses and analyse 

their causes in Engineer-to-Order construction 

supply chains. Production Planning & Control, 1-18. 

DOI: 10.1080/09537287.2020.1837931. 

[2] Dallasega, P., Rauch, E., & Frosolini, M. (2018). A 

lean approach for real-time planning and 

monitoring in engineer-to-order construction 

projects. Buildings, 8(3), 38. DOI: 

10.3390/buildings8030038. 

[3] Dallasega, P., Marengo, E., & Revolti, A. (2020). 

Strengths and shortcomings of methodologies for 

production planning and control of construction 

projects: a systematic literature review and future 

perspectives. Production Planning & Control, 1-26. 

DOI: 10.1080/09537287.2020.1725170. 

[4] KPMG (2015). Global Construction Survey 

Climbing the Curve: 2015 Global Construction 

Project Owner’s Survey URL: 

www.kpmg.com/building. (accessed 16.12.2020). 

[5] Mc Kinsey Global Institute (2015). Megaprojects: 

The good, the bad and the better, URL: 

https://www.mckinsey.com/business-

functions/operations/our-insights/megaprojects-

the-good-the-bad-and-the-better. (accessed 

19.12.2020) 

[6] McKinsey Productivity Sciences Center (2015). 

The construction productivity imperative, URL:  

https://www.mckinsey.com/business-

862



38th International Symposium on Automation and Robotics in Construction (ISARC 2021) 

functions/operations/our-insights/the-construction-

productivity-imperative. (accessed 21.04.2021) 

[7] Zhao, J., Zhang, J., & Seppänen, O. (2019). Real-

time Tracking for Intelligent Construction Site 

Platform in Finland and China: Implementation, 

Data Analysis and Use Cases. In ISARC. 

Proceedings of the International Symposium on 

Automation and Robotics in Construction (Vol. 36, 

pp. 62-68). IAARC Publications. DOI: 

10.22260/isarc2019/0009. 

[8] Tetik, M., Peltokorpi, A., Seppänen, O., & 

Holmström, J. (2019). Direct digital construction: 

Technology-based operations management practice 

for continuous improvement of construction 

industry performance. Automation in Construction, 

107, 102910. DOI: 10.1016/j.autcon.2019.102910. 

[9] Rossi, A., Vila, Y., Lusiani, F., Barsotti, L., Sani, L., 

Ceccarelli, P., & Lanzetta, M. (2019). Embedded 

smart sensor device in construction site machinery. 

Computers in Industry, 108, 12-20. DOI: 

10.1016/j.compind.2019.02.008.  

[10] Ballard, H. G. 2000. “The Last Planner System of 

Production Control.” Doctoral diss., University of 

Birmingham. 

[11] Song, Lingguang, and Neil N. Eldin. “Adaptive 

Real-Time Tracking and Simulation of Heavy 

Construction Operations for Look-Ahead 

Scheduling.” Automation in Construction, vol. 27, 

2012, pp. 32–39. Crossref, 

doi:10.1016/j.autcon.2012.05.007. 

[12] Haghsheno, S., Binninger, M., Dlouhy, J., & 

Sterlike, S. (2016, July). History and theoretical 

foundations of takt planning and takt control. In 

Proceedings of the 24th Annual Conference of the 

International Group for Lean Construction (IGLC 

24), Boston, MA, USA (pp. 20-22). 

[13] Kenley, R., and O. Seppänen. 2009. “Location-

Based Management of Construction Projects: Part 

of a New Typology for Project Scheduling 

Methodologies.” Paper presented at Winter 

Simulation Conference, 2563–2570. DOI: 

10.1109/WSC.2009.5429669. 

[14] Schuh, G., Brosze, T., Kompa, S., & Meier, C. 

(2012). Real-time capable Production Planning and 

Control in the Order Management of builtto-order 

Companies. In Enabling Manufacturing 

Competitiveness and Economic Sustainability (pp. 

557-562). Springer, Berlin, Heidelberg. DOI: 

10.1007/978-3-642-23860-4_91.  

[15] Akhavian, R., & Behzadan, A. (2015). Construction 

equipment activity recognition for simulation input 

modeling using mobile sensors and machine 

learning classifiers. Advanced Engineering 

Informatics, 29(4), 867–877. DOI: 

10.1016/j.aei.2015.03.001 

[16] Vasnev A., Hartmann T., Dorée A.G. (2014). A 

distributed data collection and management 

framework for tracking construction operations. 

Advanced Engineering Informatics, 28, 127 – 137  

[17] Vahdatikhaki, F., & Hammad, A. (2014). 

Framework for near real-time simulation of 

earthmoving projects using location tracking 

technologies. Automation in Construction,  

42,50–67. DOI: 10.1016/j.autcon.2014.02.018 

[18] Mann, D. (2014). Creating a Lean Culture: Tools to 

Sustain Lean Conversions, Third Edition (3. Aufl.). 

Productivity Press 

[19] Womack, J. P., & Jones, D. T. (1990). The Machine 

That Changed the World. New York: Simon and 

Schuster. 

[20] Taofeek D., Lukumon O., Muhammad B., 

Anuoluwapo O., Manuel D., Olugbenga O., Ashraf 

A. (2020). Deep learning in the construction 

industry: A review of present status and future 

innovations. Journal of Building Engineering, 

101827. 

863

https://doi.org/10.1016/j.aei.2015.03.001
https://doi.org/10.1016/j.aei.2015.03.001



